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Abstract. We compute the energies and transition probabilities for low excitations in the one- 
dimensional antiferromagnetic spin-ID Heisenberg model by means of the recursion method. 
We analyse finite-size effects in the Euclidean time (r-) representation and compare the resulting 
estimate for the thermodynamical limit with hvo parametrizations for the dynamical sbucfure 
factors in the spectral (U-) representation. 

1. Introduction 

Quantum spin systems with known dynamical behaviour are me. The spin-1/2 XX-model 
can be mapped onto a free-fermion system [l] and the dynamical spin-spin correlators can 
be computed analytically [2-51. A second example is the HaldaneShastry model [6,7]-an 
isotropic Heisenberg model with couplings which decrease with the inverse square of the 
distance between two spin operators. In this model only two-spinon excited states contribute 
to the zero-temperature dynamical structure factor [8, 91. In this paper we are concerned 
with .the familiar antiferromagnetic Heisenberg model with nearest-neighbour coupling: 

N 

H = 2 C s ( x ) .  s(x + 1) 
X=l  

and periodic boundary conditions. The dynamical structure factors at T = 0 

s ( w P 7 N )  = cw- (E" - Eo))l(nls3(P)lo)lz (1.2) 

are defined by the probabilities I(nls3(p)10)lz of transition from the ground state IO) to the 
excited state In) with energies EO and E,, respectively. The transition operator 

n 

is just the Fourier transform of the spin operator s3(x) at site x .  The lower bound for the 
excitation energies 

o1 =wl(p)=nsinp (1.4) 
has been computed by des Cloizeaux and Pearson [lo]. The infrared behaviour at p = x :  

(1.5) 0-0 S(0, p =I(, N = 00) yt 0-1 
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has been investigated in [I I]. Muller and collaborators [ 121 proposed an unsutz which takes 
into account only two-spinon excitations: 

The upper bound of these excitations 

P q ( p )  2ir sin - 
2 (1.7) 

has been obtained from the Bethe unsutz. The unsutz (1.6) has been shown [13] to satisfy 
certain conditions on the spectral moments for the dynamical structure factor. Moreover, 
it was successfully applied to the description of neutron scattering data [14]. On finite 
systems, the dynamical structure factors are defined as &function contributions in w. In 
order to extract the thermodynamical limit it is useful [U] to consider the Laplace transform 
of (1.2): 

S(t, p, N )  = dw S h  P, N)exp(-wr) = (ols:(p)exp[-r(H - Eo)ls3(p)lO). (1.8) 
0, 7 

It can be interpreted as a Euclidean time (5-)  representation of the dynamical structure 
factor. 

In this paper we want to propose a new method for computing the dynamical structure 
factors. It is based on the recursion used in [16] as input for the continued-fraction approach. 
In section 2 we will demonstrate how the energies and transition probabilities for the low 
excitations can be obtained directly from the recursion approach. In section 3 we will present 
our results on the dynamical structure factors (1.8) for systems with N = 4,6,8, ..., 28. 
Finite-size effects will be analysed and an estimate for the thermodynamical limit will be 
given. This estimate is compared in section 4 with the prediction (1.6) of Muller er al. We 
also propose a modification of this uniatz, which yields better agreement with the estimate 
of the dynamical structure factors in the thermodynamical limit. 

2. The recursion method 

Following [16], equation (1.8) can be computed by iteration. For this purpose one expands 
the Euclidean time evolution of the 'initial' state If0)  = s3(p)IO): 

in terms of an orthogonal basis Ih) which is constructed recursively by application of the 
Hamilton operator: 

( H - E o ) I ~ ) = I ~ + I ) + u ~ I ~ ~ ) + ~ K ~ ~ ~ x - ~ )  k = 0 , 1 , 2  ,... (2.2) 
where 
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with I f - 1 )  = 0 and bi = 0. On finite systems the iteration (2.2) will terminate after L steps, 
where L is the dimension of the Hilbert space spanned by the states ( H  - Eo)'~(p)lO), 
1 = 0, 1 ,  . . . , L - 1.  The iteration generates a tridiagonal L x L matrix 0: 

(H -Eo)lf) = O l f )  

with matrix elements: 

I 1  k ' = k + l  

k ' = k - 1  
0 otherwise 

(fx,l0lfk) = 

in terms of the basis l f ~ ) .  The eigenvalues of 0 yield the excitation energies w = E, -Eo 
and the eigenvectors represent the excited states In) of ( H  - EO) which in the basis I&) are 

The zero components ( fo ln)  of the eigenvectors and the excitation energies E,, - EO 
determine the dynamical structure factor: 

s(r, P .  N )  = I(foln)12exp[-r(Eo - EO)]. (2.8) 
" 

Performing the iteration (2.2) numerically, one finds that the orthogonality of the vectors 
1 fk)  is lost after a certain number of steps due to rounding errors. On the other hand it 
turns out that the energies E, - EO and transition probabilities of the low-lying excitations 
with n < 10 can be obtained with high accuracy by truncating the problem. We stop the 
iteration after i steps and diagonalize the truncated matrix 0. As an example we 
show in table 1 the first nine excitation energies and normalized transition probabilities 

x 

on a ring with N = 16 sites and momenta p/a = 4, 1, $.~1. 
The approximate solution given in table 1 is obtained by truncating the iteration after 

i = 40 steps. We only list in table 1 those digits which agree with the numerically 
exact solution given in 1151. In other  words, the number of quoted digits measures 
the accuracy of the approximation. Note that the energies and transition probabilities 
of the first four excitations are reproduced correctly with eight and more digits. The 
accuracy for the remaining five excitations is less impressive. However, this inaccuracy has 
practically no effect on our evaluation of the dynamical structure factors in the Euclidean 
time representation (1.Q since the contributions of the higher excitations are suppressed 
twofold. In addition to the exponential damping factor exp(-wr) in (1.8) it turns out that 
the transition probabilities themselves drop rapidly with w. Therefore we expect that the 
determination of the excitation energies and transition probabilities by means of the recursion 
method will also yield reliable results for larger systems with N = 18,20,. . . ,28. In these 
systems we have checked the energy and the transition probability of the first excitation with 
momentum p = K. The result obtained with the recursion method with i = 40 iterations 
is given in table 2. Again we only list those digits which agree with the numerically exact 
result. The latter is obtained from a determination of the ground state in the channels with 
total spin S = 0 and S =-1, respectively. 
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Table 1. Comparison of leading excitation energies and transition probabilities with the results 
of complete diagonalization [IS] on a ring with 16 sites. 

S ( r = O , p = x / 4 ) = 2 . 9 8 2 7 6 6 3 2 3 1 7 8 ~ 1 0 - ~  S ( i  = 0, p = x / 2 )  = 6.794375 761 266 x lo-' 
- 

om ( ~ 1 4 )  UJ"6Tt4) o"(nI21 w.lx121 ... , I ... I I .. . . .. . . 
2.302618995384 9 8645878546337 xl0" 3.380661 3858893 8.603551483282 x10-l 
4.29305867857 1094011 0661 xI0-' 4.197 135363571 1288323108707 x10-l 
4.550 19377043 8.579 155788 x I O - )  4.59757074255 6 12981208 10-3 
5.003738640 11 7.271 6867 x1014 4.738715285 73 1.485 963 59 x10-5 
5.568925 2.792 xlO-' 4.902809 151 9.727 121 x10-5 
5.781 4.38 x ~ O - ~  5.3.51 32697 1.723 352 x ~ 0 - 4  
5.8450 1.66 x10-3 5.8903 3.01 x10-' 
6 
6 

a(1o-4) 5.9 1.875 ~ 1 0 - 3  
0110-4) 6.47 8 x10-5 . .  

~ ( r  = 0, p = 3x14) = 1.3230534343023 ~ ( r  =O,p=n) =4.292303508279' 

2.638 1304345681 7.717 163620986 xl0-' 0.540379364500 8,01345217378 x10-l 
3.411532042825 7.7506497226 xlO-' 2.792061 17219 1.410915815 1475 x10-l 
4.330655742114 1.8574615465811 x10-l 4.668596605332 4.6691968837931 xlO@ 
5.035 83236201 8.985 257 272 x ~ O - ~  5.475947091450 1.636 197084 XIO-' 
5.440678 4.4375 x IO4 5.9070165813 1.044901 942 x10-2 
5.46270297 3.950 I T 2  x10-2 5.994081 1.03778 x10-6 
5.980403 8.0786 xlO-' 6.573253 1.55186 x10-4 
6.44 
6.643 

2.3 
5 

X I O - ~  6.80283 6.702 
xi0-4 7.1 

x 10-5 
1x10-7) 

Table 2. Comparison of leading excitation energies and transition probabilities with numerically 
exact resu1u. 

18 0.4824988997812 0 785 322982 816 
20 043589108737 0771429257660 
22 03975468223202 0.759220087 1420 
24 0.365442071611 0748370457307 
26 03381648484657 073863676353 
28 0314699900401 0729832566394 

3. Finite-size andysis of the dynamical structure factors in the Euclidean time 
representation 

For noncritical momenta p e H and Euclidean times t not too large, finite-size effects 
are small in the dynamical structure factors (1.8). In figure 1 we show the momentum 
dependence of the ratios: 

(3.1) 

for r = 1 1 1 3 fixed and N = 4,6,. . . ,28. The data points for N 8 scale in the 
momentum p except for where p = H. Therefore the resulting curves at fixed r already 
represent the thermodynamical limit R(s, p .  N = CO) for p < IT. The curves start with 
R = 1 at p = 0, have a minimum at p = po(r) n/Z and approach R = 1 again for 

4' 3' 2' 4 
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p = x .  The latter is a consequence of the nonintegrable infrared singularity in (1.5). The 
solid curves in figure 1 represent the prediction of the unsatz (1.6) of Muller eta1 1121. This 
prediction is in good agreement with our finite-system results for small p-values. Deviations 
emerge for larger p-values, which will be analysed in the next section. 

I 

0. R 

0.G 

0.4 

0.2 

r = 1/4 
0 r = 1/3 
= T = l n  

0 r = 3/4 

r 
L 

0 0.5 I 1.5 2 2.5 3 3.5 

P 
Figure 1. The momentum dependences of the ratios R(r .  p .  N) from (3.1) at i = f .  f. i. $ 
and N = 4,6,. . . ,28. The solid curve is the prediction of [IZ]. 

For increasing values of r,  finite-size effects increase. They become visible in the 
quantities p(r, p .  N ) ,  which are related to the ratios (3.1) via 

(3.3) 
the large-t behaviour 

p ( t ,  p ,  N = CO) 'z t (3.4) 
is linear. Equation (3.4) originates from the threshold singularity (1.6) which is projected 
out in (1.8) in the large-r limit. 

The small-t behaviour 

follows from a Taylor expansion of (1.8) around z = 0. The coefficient 
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is given by the first two moments of the dynamical structure factor: 

K(")(p)  dw w"S(o, p ) .  i 0 
(3.7) 

K(O)(p)  is just the static structure factor. It has been determined numerically for n/14 < 
p < 13n/14 in [17]. The first moment is known analytically [13]: 

K ( " ( p )  = (1 -cosp)co (3.8) 
where €0 = (41112 - 1)/3 is related to the ground-state energy. The coefficient p z ( p )  is 
given in table 3. 

Table 3. The ratio (3.6) of frequency moments K(')IK( ' ' )  versus p .  

p f x  1/14 1/13 1/12 1/11 I l l0  119 118 117 
&(p)  0.7373 0.7919 0.8552 0.9296 1.0180 1.1249 1.2566 1.4226 

p f n  116 115 114 2/7 IB 2 5  317 112 
h ( p )  1.6368 1.9228 2.3173 2.5705 2.8662 3.1930 3.2997 3.4741 

4 n  315 2 3  sn 314 415 516 
r n ( ~ )  3.5133 3.4912 3.3579 3.1933 3.0353 2.7634 2.5496 

~~ 

P/Z 6fl 718 819 9/10 loll1 11112 12/13 13/14 
a ( o )  2.3805 2,2432 2.1301 2.0353 1.9545 1.8847 1.8237 1.7698 

For all values of p and N we observe a very smooth and almost linear behaviour of p 
in t ,  except near t = 0, where the quadratic behaviour (3.5) is visible. Finite-size effects 
can be described with high accuracy by 

(3.9) 

as is demonstrated in figure 2(a) for p / x  = 4, 4, 3 and t = 1,S,  10. The coefficient 
c(r, p )  increases with t and with p for p > x/3,  as can be seen in figure 2(b). The 
resulting estimates p ( r ,  p )  = p(r, p .  N = w) for the thermodynamical limit are plotted 
in figure 3 for p / a  = i ,  a. ?. 7, ?,I, T . T . ~ ,  z ,  i. Here we have included momentum 
values p = k x / l ,  k = 1,2, ..., 6, which are realized on two systems ( N  = 14,28) only- 
assuming that the finite-size behaviour is of the form (3.9). Note that p(t ,  p )  is strictly 
monotonic in p and t .  In order to reach this property we have changed the definition of the 
variable r .  Equation (3.3) differs from the definition given in [U] by the factor m. 

The enor in our estimate of p(t,  p )  is presumably less than the width of the lines in 
figure 3. This optimistic view appears to be justified by the clean signal for the finitesize 
behaviour (3.9) seen in the data. 

4. A modified ansa& for the dynamical structure factors 

In figure 4(a) we compare our estimate for p ( t ,  p )  with the prediction pw(t, p ) ,  which 
follows from the ansarz (1.6). The difference 

1 1 2 1 3 1 4 2 5 3 6  

 AM(^, P) = p d t .  p )  - P ( t ,  P) (4.1) 
is negative for p < n/3 and positive for p > n/3. It increases with t and p for p z x/3. 
The increase of the deviations with p has been observed also in the static structure factors 
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I4 ' 
P P. N )  

. IS0 

- 1=IO 
-e r = 5  -. 

' 

' 120 

100 

-- 

.- 

, 40 

2o 

- 0  

-. 
2 .. 

*: - rd2 
. 

.27ri3 
, 7 r i 3 , , , , ,  

0 0.02 0.04 0.OG -0 2 4 G 8 10 

N.Z I 

0 -  

Figure 2. 
dependence at p / x  = 4, 4, 
fixed p i x  = a. 4.1, {, i. 

The finite-size behaviour (3.9) of p(1. p, N)-defined in (3.2): (a) the N - l -  
and I = I ,  5. IO; (b) the coefficient =(I .  p)  versus I from (3.3) at 

I I 

0 6 8 IO 

Figure 3. The estimate p ( 1 , p )  of the thermodynamical limit versus t at fixed momenta 
p i x  = 7, a. 7. 9,  7, 5 ,  7, 9,  7, 7. 7. The inset shows the magnification for 0 < I < I .  1 1 2 1 3 1 4 2 5 3 6  

[17]. Before presenting modifications of the ansniz which are in better agreement with the 
estimate of the thermodynamical limit let us briefly review the properties of the frequency 
moments K(")(p)-defined in (3.7). 

(i) The moment (3.8) with n = 1 is determined by the ground-state energy. 
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2 

1.5 

I 

0.5 

0 

PMM - P.. 

17 = U4 
1' = U3 

p = 2d3 
I' = 3x/4 

0 2 4 G 8 10 0 2 4 G 8 ,  IO 

I f 

Figure 4. Comparison of the estimate p(r .  p )  with (a) fhe onslur of Muller er ol [IZ]; (b) the 
modified ansotz (4.3). 

(ii) The higher moments with n odd are known [13] to be polynomials of order n in 

(iii) The moment with n = -1 is related to the static susceptibility ~ ( p ) ,  which yields 
cos p .  

in the zero-momentum limit 1121 

(iv) The moment with n = 0 is identical with the static structure factor, which has 
been determined in [I71 from a finite-size analysis in the momentum interval r / 14  < p < 
13r/14. 

The ansafz of Miiller ef a1 [12] respects the first two properties. However, the first and 
third one cannot be satisfied simultaneously with this ansafz. We therefore would like to 
propose a modification here: 

(4.3) 

with a momentum-dependent amplitude A ( p )  and a modified high-frequency cut-off: 

GAP)  = U ( P ) W ( P ) .  (4.4) 

(4.5) 

Properties (i) and (iii) are satisfied now if we choose: 

A ( p )  Zo 0.7475.. . x p .  P-Q u ( p )  -+ 1.274.. . 
This yields a prediction for the static structure factor in the low-momentum limit: 

P K(')(p) 1.084.. . x - 4a (4.6) 
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which is in good agreement with the results of the finitesize analysis [17]. For n/14 < 
p < 13x/14, we fix u ( p )  in such a way that the ratio (3.6) of the moments with n = 1 
and n = 0 is reproduced correctly. u(p) is shown in figure 5(a). It turns out to be smaller 
than 1 for p > n/3 and larger than 1 for p < z/3. The extrapolation to p = 0 seems to 
meet the value given in (4.5). Finally, we determine the p-dependence of the amplitude 
A ( p )  from the moment sum rule (3.8) with n = 1. A ( p )  is shown in figure 5(b). The 
extrapolation to p = 0 is compatible with the behaviour given in (4.5). The values of A ( p )  
and u(p) at p = H :  

A(n) = 1.88(8) U(H) = 0.63(5) (4.7) 

have been obtained in 1171 from a fit to the static structure factor of the form 

(4.8) 

0 I 2 3 

I’ Y 
Figure 5. The momentum dependence of the parameters in the modified onsalz (4.3): (a) the 
modification U@) of the high-frrqueney cut-off (4.4): (b) the amplitude A ( p ) .  

In figure 4(b) we compare the estimate for p(t ,  p )  with the prediction pMM(t, p ) ,  
which follows from the ansntz (4.3) with the momentum-dependent amplitude A ( p )  and 
the modified high-frequency cut-off (4.4). The difference: 

P) = pM.dtr P) - p ( t ,  P) (4.9) 

is obviously much smaller than (4.1). which is shown in figure 4(a). On the other hand 
(4.9) is not yet zero. In particular for large t and p = 3n/4 we still observe sizeable 
deviations from our estimate p( t ,  p )  for the thermodynamical limit, leaving room for further 
improvements of the ansae (4.3). 
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5. Conclusions 

The Euclidean time representation (1.8) is particularly suited for a study of finite- 
size effects in dynamical structure factors. In this paper we investigated the spin-1/2 
antiferromagnetic Heisenberg model (1.1). We found that finite-size effects in the Euclidean 
time representation die out with N-' for those momentum values p where there is a gap 
(1.4) between the ground state and the first excited state with momentum p .  We then 
compared our estimate for the thermodynamical limit with two predictions. Each of them 
follows from an amatz of the type (4.3) for the spectral (U-) representation of the dynamical 
structure factor. 

(a) The first ansatz-i.e. (4.3) with momentum-independent amplitude A ( p )  = A and 
u ( p )  = l-has been proposed by Muller et al [12]. It takes into account two-spinon 
contributions only and respects the properties (i) and (ii) for the frequency moments K")(p)  
listed in section 4. Deviations from our estimate for the thermodynamical limit appear for 
larger momenta and Euclidean times z. 

(b) In the second ansatz (4.3) the momentum dependences of the amplitude A ( p )  and 
of the modification u ( p )  for the high-frequency cut-off (4.4) have been chosen such that 
the spectral moments K(")(p)  with n = -1, 0, 1 are reproduced. In particular, the zero- 
momentum behaviour of K ( - I ) ( p )  and @')@) enforces the vanishing of the amplitude 
A ( p  = 0) and a well defined modification (4.5) of the high-frequency cut-off (4.4). The 
second ansatz is in better agreement with our estimate for the thermodynamical limit of the 
dynamical structure factor. 

We are aware of the fact that the relevant excitation spectrum in the spin-1/2 
antiferromagnetic Heisenberg model is unbounded. One might ask how to interpret the 
'effective' high-frequency cut-off (4.4) and the fact that it is above the two-spinon cut-off for 
p e x/3 and below for p > x/3. Adding in the dynamical structure factor high-frequency 
excitations (o > oz(p))-which are not of the two-spinon type-will always lead to an 
increase of the effective high-frequency cut-off (4.4). Therefore, such contributions are 
responsible for the increase of the effective high-frequency cut-off (4.4) for p e nf3. On 
the other hand they cannot explain the lowering of the effective high-frequency cut-off for 
p > R / 3 .  
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